3E current sensor

Датчик тока SC6PR - 100A

Для электронного преобразования токов: постоянного, переменного, импульсного и т.д. в пропорциональный выходной ток с гальванической развязкой между первичной (силовой) и вторичной (измерительной) цепями.

Электрические параметры

I _{PN}	Номинальный входной ток, эфф.знач. Диапазон преобразования	100 0 ± 200)	A A
$\mathbf{R}_{_{\mathrm{M}}}$	Величина нагрузочного резистора при $\mathbf{T}_{A} = 70^{\circ}\mathrm{C}$			
		R _{M min}	$\mathbf{R}_{\mathrm{M}\mathrm{max}}$	
	питание ± 12 В при ± 100 А _{мах}	10	80	Ом
	питание \pm 15 В при \pm 100 А _{мах}	30	80	Ом
I _{SN}	Номинальный аналоговый выходной ток	100		мА
K _N	Коэффициент преобразования	1:1000		
V _C	Напряжение питания (± 5 %)	± 12 1	5	В
I _c	Ток потребления	10 (@ ±15	БB)+ I s	мА
V _d	Электрическая прочность изоляции, 50 Гц, 1 мин	3.0	Ü	κВ

Точностно-динамические характеристики

X	Точность преобразования при $ {f I}_{_{PN}} , {f T}_{_A} = 25^{\circ} {f C} $	± 0.5	%
$\mathbf{e}_{\scriptscriptstyle L}$	Нелинейность	< 0.15	%
		Средн Макс	;
I_{\circ}	Начальный выходной ток при $\mathbf{I}_{_{\mathrm{P}}}$ = 0, $\mathbf{T}_{_{\mathrm{A}}}$ = 25°C	± 0.15 ± 0.35	5 мА
\mathbf{I}_{OT}	Температурный дрейф $I_{\rm o}$ - 40°C+85°C	± 0.60 ± 1.0	мА
\mathbf{t}_{r}	Время задержки при 90 % от $ {f I}_{{}_{\rm P max}} $	< 1	МКС
di/dt	Скорость нарастания входного тока	> 100	А/мкс
f	Частотный диапазон (-1дБ)	0 100	кГц

Справочные данные

$\mathbf{T}_{_{\mathrm{A}}}$	Рабочая температура		- 40 + 85	°C
\mathbf{T}_{s}	Температура хранения		- 40 + 90	°C
\mathbf{R}_{s}	Выходное сопротивление при	$T_A = 70$ °C	30	Ом
m	Вес, не более		22	Г

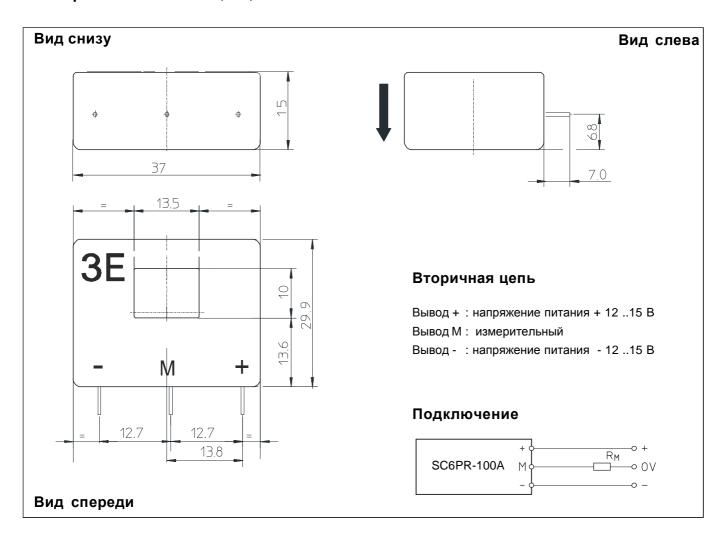
$I_{PN} = 100 A$

Отличительные особенности

- Компенсационный датчик на эффекте Холла
- Изолирующий пластиковый негорючий корпус

Преимущества

- Отличная точность
- Хорошая линейность
- Очень низкий температурный дрейф
- Оптимальное время задержки
- Широкий частотный диапазон
- Высокая помехозащищенность
- Высокая перегрузочная способность.


Применение

- Частотно-регулируемый привод переменного тока
- Преобразователи для привода постоянного тока
- Системы управления работой аккумуляторных батарей
- Источники бесперебойного питания
- Программируемые источники питания
- Источники питания для сварочных агрегатов.

Изготовитель - фирма 3E, Китай

3E current sensor

Размеры SC6PR - 100A (в мм)

Механические характеристики

• Общий допуск

± 0.2 мм

• Подключение первичной цепи через отверстие

3 вывода

• Подключение вторичной цепи

13.5 х 10 мм $0.8 \times 0.8 \text{ MM}$

Примечания

- I_{s} положителен, когда I_{p} протекает в направлении, обозначенном стрелкой на корпусе.
- Температура первичной шины не должна превышать 90°C.
- Наилучшие динамические характеристики (di/dt и время задержки) достигаются при полном заполнении неизолированной первичной шиной входного отверстия датчика.
- Для получения наилучшей магнитной связи дополнительные первичные витки следует прокладывать через верхнюю сторону датчика.