

Датчик тока LT 300-T/SP50

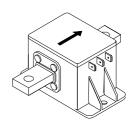
Для электронного преобразования токов: постоянного, переменного, импульсного и т.д. в пропорциональный выходной ток с гальванической развязкой между первичной (силовой) и вторичной (измерительной) цепями.

Электрические параметры

_{PN} _P	Номинальный входной ток, эфф.знач. Диапазон преобразования		300 0 ± 500		A A
$\mathbf{R}_{\scriptscriptstyle{\mathrm{M}}}$	Величина нагрузочного	резистора	$\mathbf{R}_{\mathrm{M}\;\mathrm{min}}$	$\mathbf{R}_{M\;ma}$	x
	питание ± 12 V	при ± 300 A _{max}	0	30	Ом
		при ± 500 A _{max}	0	5	Ом
	питание ± 18 V	при ± 300 A _{max}	20	70	Ом
		при ± 500 A _{max}	20	25	Ом
I _{SN}	Номинальный аналого	вый выходной ток	100		мА
K	Коэффициент преобразования		1:3000)	
V _C	Напряжение питания (± 5 %)		± 12	18	В
I _c	Ток потребления		28 (при ±	± 18B) + l ¸	мА
\mathbf{V}_{d}	Электрическая прочнос	ть изоляции, 50 Гц, 1 мин	6	•	кВ

Точностно-динамические характеристики

\mathbf{z}_{G}	Ошибка преобразования при $\mathbf{I}_{\mathtt{PN}}$, Нелинейность	T _A = 25°C	± 0.5 < 0.1		% %
I _O I _{OT}	Начальный выходной ток при \mathbf{I}_{p} Температурный дрейф \mathbf{I}_{0}	- 40°C + 70°C - 50°C 40°C	то стрежения и том и то		мА мА
t _r di/dt f	Время задержки ¹⁾ при 90 % от Скорость нарастания входного Частотный диапазон (- 1 dB)		< 1 > 50 0 150	0	мкс А/мкс кГц
	, ,				


Справочные данные

Климатическое исполнение У, категория размещения 2 (ГОСТ 15150-69)

$T_{\scriptscriptstyle \Delta}$	Рабочая температура		- 50 + 70	°C	
$\mathbf{T}_{\mathrm{S}}^{'}$	Температура хранения		- 60 + 90	°C	
$\ddot{R_{\mathrm{s}}}$	Выходное сопротивление при 1	$\Gamma_{A} = 70^{\circ}C$	80	Ом	
m	Вес (не более)		480	Г	
	Стандарты	ТУ	3413-001-00512622-2002 69.41.46.050.0		
	Код LEM				

<u>Примечание</u>: 1) При скорости нарастания входного тока 100 А/мкС

$I_{PN} = 300 A$

Отличительные особенности

- Компенсационный датчик на эффекте Холла
- Изолирующий пластиковый негорючий корпус.
- Залит эпоксидным компаундом
- Применение в железнодорожном оборудовании
- $T_{\Delta} = -50^{\circ}C ... + 70^{\circ}C$

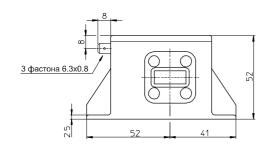
Преимущества

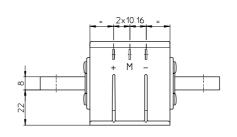
- Отличная точность
- Хорошая линейность
- Низкий температурный дрейф
- Оптимальное время задержки
- Широкий частотный диапазон
- Высокая помехозащищенность
- Высокая перегрузочная способность.

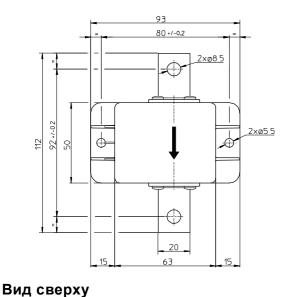
Применение

- Частотно-регулируемый привод переменного тока
- Преобразователи для привода постоянного тока
- Системы управления работой аккумуляторных батарей
- Источники бесперебойного питания
- Программируемые источники питания

Изготовитель -ООО "ТВЕЛЕМ", Россия


Система менеджмента качества предприятия сертифицирована на соответствие требованиям ISO 9001 – 2008

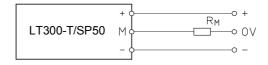



Размеры LT 300-T/SP50

чешера. — 1 000 1/01 00

Вид спереди

Вторичная цепь


Вывод + : напряжение питания + 12..18 В

Вид слева

Вывод М: измерительный

Вывод - : напряжение питания - 12 ..18 В

Подключение

Механические характеристики

• Общий допуск

• Крепление

± 0.3 мм 2 отв. ∅ 5.5 мм или на первичную шину

• Подключение первичной цепи

• Подключение вторичной цепи

2 отв ∅ 8.5 мм

фастоны 6.3х0.8мм

Примечания

- ${f I}_{_{\rm S}}$ положителен, когда ${f I}_{_{\rm P}}$ протекает в направлении, указанном стрелкой на корпусе.
- Температура первичной шины не должна превышать 100 °C..

Приемка ОТК м.п.

Партия № _____

Дата отгрузки _____