

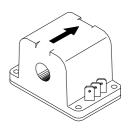
Датчик тока LT 100-S/SP97

Для электронного преобразования токов: постоянного, переменного, импульсного и т.д. в пропорциональный выходной ток с гальванической развязкой между первичной (силовой) и вторичной (измерительной) цепями.

Электрические параметры

_{PN} _P	Номинальный входной Диапазон преобразова	• • •	100 0 ± 2	00	A A
\mathbf{R}_{M}	Величина нагрузочного	резистора	$\mathbf{R}_{M\;min}$	$\mathbf{R}_{M\;ma}$	x
	питание ± 12 V	при ± 100 A _{max}	0	75	Ом
		при ± 200 A _{max}	0	25	Ом
	питание ± 18 V	при ± 100 А _{мах}	30	135	Ом
		при ± 200 A _{max}	30	55	Ом
I _{SN}	Номинальный аналоговый выходной ток		100		мА
K _N	Коэффициент преобразования		1:100	0	
V _C	Напряжение питания (± 5 %)		± 12	18	В
I _c	Ток потребления		28 (при ±18V) + I _S мА		$I_s MA$
$\mathbf{V}_{_{d}}$	Электрическая прочнос	ть изоляции, 50 Гц, 1 мин	5		κВ

Точностно-динамические характеристики


X _G & _L	Ошибка преобразования при ${f I}_{PN}$, ${f T}_{A}$ = 25°C Нелинейность		0.5		% %
I _O	Начальный выходной ток при $I_p = 0$, $T_A = 25$ Температурный дрейф $I_0 -40^{\circ}$ С + -50°С	5°C 70°C ±		Maκc ± 0.4 ± 1.0 ± 1.5	мА мА мА
t _r di/dt f	Время задержки $^{1)}$ при $90~\%$ от $\mathbf{I}_{P\ max}$ Скорость нарастания входного тока Частотный диапазон (- 1 dB)	>	: 1 · 50 · 150		мкс А/мкс кГц

Справочные данные

Клима	тическое исполнение У, категория размеще	ния 2 (ГОСТ 15150-69)		
T_A	Рабочая температура	- 50 + 70	°C	
Ts	Температура хранения	- 60 + 90	°C	
\mathbf{R}_{s}	Выходное сопротивление при $T_A = 70^{\circ}C$	25	Ом	
m	Bec	180	Г	
	Стандарты	У 3413-001-00512622-2002		
	Код LEM	69.43.34.097.0		

Примечание: 1) При скорости нарастания входного тока 100 А/мкС

$I_{PN} = 100 A$

Отличительные особенности

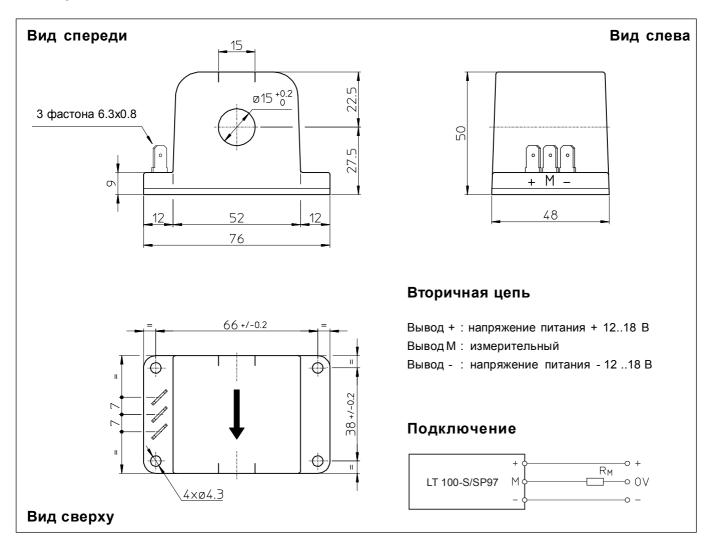
- Компенсационный датчик на эффекте Холла
- Изолирующий пластиковый негорючий корпус.
- Залит эпоксидным компаундом
- Применение в железнодорожном оборудовании
- T_A = 50°C .. + 70°C

Преимущества

- Отличная точность
- Хорошая линейность
- Низкий температурный дрейф
- Оптимальное время задержки
- Широкий частотный диапазон
- Высокая помехозащищенность
- Высокая перегрузочная способность.

Применение

- Частотно-регулируемый привод переменного тока
- Преобразователи для привода постоянного тока
- Системы управления работой аккумуляторных батарей
- Источники бесперебойного питания
- Программируемые источники питания


Изготовитель -ООО "ТВЕЛЕМ", Россия

Система менеджмента качества предприятия сертифицирована на соответствие требованиям ISO 9001 – 2008

Размеры LT 100-S/SP97

Механические характеристики

Общий допуск ± 0.3 мм
Крепление 4 отв. Ø 4.3 мм

• Подключение первичной цепи

• Подключение вторичной цепи фастоны 6.3x0.8 мм

Ø 15 мм

Приемка ОТК м.п.

Партия № _____

Дата отгрузки _____

Примечания

- $\mathbf{I}_{_{\mathrm{S}}}$ положителен, когда $\mathbf{I}_{_{\mathrm{P}}}$ протекает в направлении, указанном стрелкой на корпусе.
- Температура первичной шины не должна превышать 100 °C.
- Наилучшие динамические характеристики (di/dt и время задержки) достигаются при полном заполнении неизолированной первичной шиной входного отверстия датчика.
- Для получения наилучшей магнитной связи дополнительные первичные витки следует прокладывать через верхнюю сторону датчика.